Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Microbiol Resour Announc ; : e0002924, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700340

RESUMO

The human pathogen Chlamydia trachomatis has multiple serovariants that have distinct organotropisms. We recently revised genomic sequence data linked to ocular reference strain, B/HAR36. Now linked to its correct genomic data in the European Nucleotide Archive, we describe its genomic features.

2.
PLoS Negl Trop Dis ; 18(4): e0012143, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38662795

RESUMO

Trachoma is the leading infectious cause of blindness worldwide and is now largely confined to around 40 low- and middle-income countries. It is caused by Chlamydia trachomatis (Ct), a contagious intracellular bacterium. The World Health Organization recommends mass drug administration (MDA) with azithromycin for treatment and control of ocular Ct infections, alongside improving facial cleanliness and environmental conditions to reduce transmission. To understand the molecular epidemiology of trachoma, especially in the context of MDA and transmission dynamics, the identification of Ct genotypes could be useful. While many studies have used the Ct major outer membrane protein gene (ompA) for genotyping, it has limitations. Our study applies a typing system novel to trachoma, Multiple Loci Variable Number Tandem Repeat Analysis combined with ompA (MLVA-ompA). Ocular swabs were collected post-MDA from four trachoma-endemic zones in Ethiopia between 2011-2017. DNA from 300 children with high Ct polymerase chain reaction (PCR) loads was typed using MLVA-ompA, utilizing 3 variable number tandem repeat (VNTR) loci within the Ct genome. Results show that MLVA-ompA exhibited high discriminatory power (0.981) surpassing the recommended threshold for epidemiological studies. We identified 87 MLVA-ompA variants across 26 districts. No significant associations were found between variants and clinical signs or chlamydial load. Notably, overall Ct diversity significantly decreased after additional MDA rounds, with a higher proportion of serovar A post-MDA. Despite challenges in sequencing one VNTR locus (CT1299), MLVA-ompA demonstrated cost-effectiveness and efficiency relative to whole genome sequencing, providing valuable information for trachoma control programs on local epidemiology. The findings suggest the potential of MLVA-ompA as a reliable tool for typing ocular Ct and understanding transmission dynamics, aiding in the development of targeted interventions for trachoma control.


Assuntos
Proteínas da Membrana Bacteriana Externa , Chlamydia trachomatis , Genótipo , Repetições Minissatélites , Tracoma , Chlamydia trachomatis/genética , Chlamydia trachomatis/isolamento & purificação , Chlamydia trachomatis/classificação , Tracoma/epidemiologia , Tracoma/microbiologia , Tracoma/tratamento farmacológico , Humanos , Etiópia/epidemiologia , Repetições Minissatélites/genética , Proteínas da Membrana Bacteriana Externa/genética , Feminino , Masculino , Pré-Escolar , Tipagem Molecular/métodos , Azitromicina/uso terapêutico , Variação Genética , Lactente , Criança , Antibacterianos/farmacologia , DNA Bacteriano/genética
3.
Microb Genom ; 10(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445851

RESUMO

Trachoma, a neglected tropical disease caused by Chlamydia trachomatis (Ct) serovars A-C, is the leading infectious cause of blindness worldwide. Africa bears the highest burden, accounting for over 86 % of global trachoma cases. We investigated Ct serovar A (SvA) and B (SvB) whole genome sequences prior to the induction of mass antibiotic drug administration in The Gambia. Here, we explore the factors contributing to Ct strain diversification and the implications for Ct evolution within the context of ocular infection. A cohort study in 2002-2003 collected ocular swabs across nine Gambian villages during a 6 month follow-up study. To explore the genetic diversity of Ct within and between individuals, we conducted whole-genome sequencing (WGS) on a limited number (n=43) of Ct-positive samples with an omcB load ≥10 from four villages. WGS was performed using target enrichment with SureSelect and Illumina paired-end sequencing. Out of 43 WGS samples, 41 provided sufficient quality for further analysis. ompA analysis revealed that 11 samples had highest identity to ompA from strain A/HAR13 (NC_007429) and 30 had highest identity to ompA from strain B/Jali20 (NC_012686). While SvB genome sequences formed two distinct village-driven subclades, the heterogeneity of SvA sequences led to the formation of many individual branches within the Gambian SvA subclade. Comparing the Gambian SvA and SvB sequences with their reference strains, Ct A/HAR13 and Ct B/Jali20, indicated an single nucleotide polymorphism accumulation rate of 2.4×10-5 per site per year for the Gambian SvA and 1.3×10-5 per site per year for SvB variants (P<0.0001). Variant calling resulted in a total of 1371 single nucleotide variants (SNVs) with a frequency >25 % in SvA sequences, and 438 SNVs in SvB sequences. Of note, in SvA variants, highest evolutionary pressure was recorded on genes responsible for host cell modulation and intracellular survival mechanisms, whereas in SvB variants this pressure was mainly on genes essential for DNA replication/repair mechanisms and protein synthesis. A comparison of the sequences between observed separate infection events (4-20 weeks between infections) suggested that the majority of the variations accumulated in genes responsible for host-pathogen interaction such as CTA_0166 (phospholipase D-like protein), CTA_0498 (TarP) and CTA_0948 (deubiquitinase). This comparison of Ct SvA and SvB variants within a trachoma endemic population focused on their local evolutionary adaptation. We found a different variation accumulation pattern in the Gambian SvA chromosomal genes compared with SvB, hinting at the potential of Ct serovar-specific variation in diversification and evolutionary fitness. These findings may have implications for optimizing trachoma control and prevention strategies.


Assuntos
Tracoma , Humanos , Tracoma/epidemiologia , Tracoma/genética , Chlamydia trachomatis/genética , Gâmbia/epidemiologia , Estudos de Coortes , Seguimentos , Genômica
4.
PLoS Negl Trop Dis ; 17(10): e0011689, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37862368

RESUMO

BACKGROUND: Trachoma is a neglected tropical disease caused by ocular infection with Chlamydia trachomatis, where repeated infections and chronic inflammation can ultimately result in scarring, trichiasis and blindness. While scarring is thought to be mediated by a dysregulated immune response, the kinetics of cytokines and antimicrobial proteins in the tear film have not yet been characterised. METHODOLOGY: Pooled tears from a Gambian cohort and Tanzanian cohort were semi-quantitatively screened using a Proteome Profiler Array to identify cytokines differentially regulated in disease. Based on this screen and previous literature, ten cytokines (CXCL1, IP-10, IFN-γ, IL-1ß, IL-8, IL-10, IL-12 p40, IL-1RA, IL-1α and PDGF), lysozyme and lactoferrin were assayed in the Tanzanian cohort by multiplex cytokine assay and ELISA. Finally, CXCL1, IP-10, IL-8, lysozyme and lactoferrin were longitudinally profiled in the Gambian cohort by multiplex cytokine assay and ELISA. RESULTS: In the Tanzanian cohort, IL-8 was significantly increased in those with clinically inapparent infection (p = 0.0086). Lysozyme, IL-10 and chemokines CXCL1 and IL-8 were increased in scarring (p = 0.016, 0.046, 0.016, and 0.037). CXCL1, IP-10, IL-8, lysozyme and lactoferrin were longitudinally profiled over the course of infection in a Gambian cohort study, with evidence of an inflammatory response both before, during and after detectable infection. CXCL1, IL-8 and IP-10 were higher in the second infection episode relative to the first (p = 0.0012, 0.044, and 0.04). CONCLUSIONS: These findings suggest that the ocular immune system responds prior to and continues to respond after detectable C. trachomatis infection, possibly due to a positive feedback loop inducing immune activation. Levels of CXC chemokines in successive infection episodes were increased, which may offer an explanation as to why repeated infections are a risk factor for scarring.


Assuntos
Anti-Infecciosos , Tracoma , Humanos , Citocinas/metabolismo , Interleucina-10/metabolismo , Muramidase/metabolismo , Estudos de Coortes , Interleucina-8/metabolismo , Cicatriz/patologia , Quimiocina CXCL10/metabolismo , Lactoferrina/metabolismo
5.
Viruses ; 15(9)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37766360

RESUMO

The global incidence of sexually transmitted infections (STIs) remains high, with the World Health Organization (WHO) estimating that over 1 million people acquire STIs daily. STIs can lead to infertility, pregnancy complications, and cancers. Co-infections with multiple pathogens are prevalent among individuals with an STI and can lead to heightened infectivity and more severe clinical manifestations. Chlamydia trachomatis (CT) is the most reported bacterial STI worldwide in both men and women, and several studies have demonstrated co-infection of CT with viral and other bacterial STIs. CT is a gram-negative bacterium with a unique biphasic developmental cycle including infectious extracellular elementary bodies (EBs) and metabolically active intracellular reticulate bodies (RBs). The intracellular form of this organism, RBs, has evolved mechanisms to persist for long periods within host epithelial cells in a viable but non-cultivable state. The co-infections of CT with the most frequently reported sexually transmitted viruses: human immunodeficiency virus (HIV), human papillomavirus (HPV), and herpes simplex virus (HSV) have been investigated through in vitro and in vivo studies. These research studies have made significant strides in unraveling the intricate interactions between CT, these viral STIs, and their eukaryotic host. In this review, we present an overview of the epidemiology of these co-infections, while specifically delineating the underlying mechanisms by which CT influences the transmission and infection dynamics of HIV and HSV. Furthermore, we explore the intricate relationship between CT and HPV infection, with a particular emphasis on the heightened risk of cervical cancer. By consolidating the current body of knowledge, we provide valuable insights into the complex dynamics and implications of co-infection involving CT and sexually transmitted viruses.


Assuntos
Coinfecção , Infecções por HIV , Masculino , Gravidez , Humanos , Feminino , Chlamydia trachomatis , Coinfecção/epidemiologia , Comportamento Sexual , Papillomavirus Humano
6.
Front Immunol ; 14: 1178741, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287960

RESUMO

Background: Ocular infections with Chlamydia trachomatis serovars A-C cause the neglected tropical disease trachoma. As infection does not confer complete immunity, repeated infections are common, leading to long-term sequelae such as scarring and blindness. Here, we apply a systems serology approach to investigate whether systemic antibody features are associated with susceptibility to infection. Methods: Sera from children in five trachoma endemic villages in the Gambia were assayed for 23 antibody features: IgG responses towards two C. trachomatis antigens and three serovars [elementary bodies and major outer membrane protein (MOMP), serovars A-C], IgG responses towards five MOMP peptides (serovars A-C), neutralization, and antibody-dependent phagocytosis. Participants were considered resistant if they subsequently developed infection only when over 70% of other children in the same compound were infected. Results: The antibody features assayed were not associated with resistance to infection (false discovery rate < 0.05). Anti-MOMP SvA IgG and neutralization titer were higher in susceptible individuals (p < 0.05 before multiple testing adjustment). Classification using partial least squares performed only slightly better than chance in distinguishing between susceptible and resistant participants based on systemic antibody profile (specificity 71%, sensitivity 36%). Conclusions: Systemic infection-induced IgG and functional antibody responses do not appear to be protective against subsequent infection. Ocular responses, IgA, avidity, or cell-mediated responses may play a greater role in protective immunity than systemic IgG.


Assuntos
Tracoma , Criança , Humanos , Tracoma/diagnóstico , Tracoma/epidemiologia , Chlamydia trachomatis , Formação de Anticorpos , Olho/metabolismo , Imunoglobulina G
7.
Hum Immunol ; 84(2): 69-70, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36335053

RESUMO

Class II HLA loci DRB1, DQB1 and DPB1 were typed for a total of 939 Gambian participants by locus-specific amplicon sequencing. Participants were from multiple regions of The Gambia and drawn from two studies: a family study aiming to identify associations between host genotype and trachomatous scarring (N = 796) and a cohort study aiming to identify correlates of immunity to trachoma (N = 143). All loci deviated from Hardy-Weinberg equilibrium, likely due to the family-based nature of the study: 608 participants had at least one other family member included in the study population. The most common alleles for HLA-DRB1, DQB1 and DPB1 respectively were DRB1*13:04 (18.8 %), DQB1*03:19 (27.9 %) and DPB1*01:01 (25.4 %). Participants belonged to a variety of ethnicities, including the Mandinka, Fula, Wolof and Jola ethnic groups.


Assuntos
Cadeias HLA-DRB1 , Humanos , Cadeias HLA-DRB1/genética , Haplótipos , Gâmbia , Frequência do Gene , Alelos , Estudos de Coortes , Cadeias beta de HLA-DP/genética , Cadeias beta de HLA-DQ/genética
8.
Hum Immunol ; 84(2): 67-68, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36335052

RESUMO

Locus-specific amplicon sequencing was used to HLA type 336 participants of Maasai ethnicity at the HLA-A, -B, -C, -DRB1, -DQB1 and -DPB1 loci. Participants were recruited from three study villages in North Tanzania, for the purpose of investigating risk factors for trachomatous scarring in children. Other than HLA-A, all loci significantly deviated from Hardy-Weinberg equilibrium, possibly due to high relatedness between individuals: 238 individuals shared a house with at least one another participant. The most frequent allele for each locus were A*68:02 (14.3 %), B*53:01 (8.4 %), C*06:02 (19.2 %), DRB1*13:02 (17.7 %), DQB1*02:01 (16.9 %) and DPB1*01:01 (15.7 %), while the most common inferred haplotype was A*68:02 âˆ¼ B*18:01 âˆ¼ C*07:04 âˆ¼ DRB1*08:04 âˆ¼ DQB1*04:02 âˆ¼ DPB1*04:01 (1.3 %).


Assuntos
Antígenos HLA-A , Criança , Humanos , Tanzânia , Cadeias beta de HLA-DQ/genética , Cadeias HLA-DRB1/genética , Frequência do Gene , Haplótipos , Antígenos HLA-A/genética , Alelos
9.
Front Public Health ; 10: 1015714, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324475

RESUMO

Background: Trachoma, caused by ocular infection with Chlamydia trachomatis, is a neglected tropical disease that can lead to blinding pathology. Current trachoma control programmes have successfully used mass drug administration (MDA) with azithromycin to clear C. trachomatis infection and reduce transmission, alongside promoting facial cleanliness for better personal hygiene and environmental improvement. In areas of low-trachoma endemicity, the relationship between C. trachomatis infection and trachomatous disease weakens, and non-chlamydial bacteria have been associated with disease signs. Methods: We enrolled a cohort of children aged 6-10 years from three adjacent trachoma endemic villages in Kilimanjaro and Arusha regions, Northern Tanzania. Children were divided into four clinical groups based on the presence or absence of ocular C. trachomatis infection and clinical signs of trachomatous papillary inflammation (TP). To determine the impact of treatment on the ocular microbiome in these clinical groups, we performed V4-16S rRNA sequencing of conjunctival DNA from children 3-9 months pre-MDA (n = 269) and 3 months post-MDA (n = 79). Results: Chlamydia trachomatis PCR-negative, no TP children had the highest pre-MDA ocular microbiome alpha diversity, which was reduced in C. trachomatis infected children and further decreased in those with TP. Pre-MDA, Haemophilus and Staphylococcus were associated with C. trachomatis infection with and without concurrent TP, while Helicobacter was increased in those with TP in the absence of current C. trachomatis infection. Post-MDA, none of the studied children had ocular C. trachomatis infection or TP. MDA increased ocular microbiome diversity in all clinical groups, the change was of greater magnitude in children with pre-MDA TP. MDA effectively reduced the prevalence of disease causing pathogenic non-chlamydial bacteria, and promoted restoration of a normal, healthy conjunctival microbiome. Conclusion: We identified Helicobacter as a non-chlamydial bacterium associated with the clinical signs of TP. Further investigation to determine its relevance in other low-endemicity communities is required. MDA was shown to be effective at clearing C. trachomatis infection and other non-chlamydial ocular pathogens, without any detrimental longitudinal effects on the ocular microbiome. These findings suggest that azithromycin MDA may be valuable in trachoma control even in populations where the relationship between clinical signs of trachoma and the prevalence of current ocular C. trachomatis infection has become dissociated.


Assuntos
Microbiota , Tracoma , Criança , Humanos , Tracoma/tratamento farmacológico , Tracoma/epidemiologia , Tracoma/prevenção & controle , Azitromicina/uso terapêutico , Azitromicina/farmacologia , Administração Massiva de Medicamentos , Tanzânia/epidemiologia , RNA Ribossômico 16S , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Chlamydia trachomatis/genética , Túnica Conjuntiva
11.
Front Public Health ; 10: 756318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242730

RESUMO

Community-level mass treatment with azithromycin has been associated with a mortality benefit in children. However, antibiotic exposures result in disruption of the gut microbiota and repeated exposures may reduce recovery of the gut flora. We conducted a nested cohort study within the framework of a randomized controlled trial to examine associations between mass drug administration (MDA) with azithromycin and the gut microbiota of rural Malawian children aged between 1 and 59 months. Fecal samples were collected from the children at baseline and 6 months after two or four biannual rounds of azithromycin treatment. DNA was extracted from fecal samples and V4-16S rRNA sequencing used to characterize the gut microbiota. Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria were the dominant phyla while Faecalibacterium and Bifidobacterium were the most prevalent genera. There were no associations between azithromycin treatment and changes in alpha diversity, however, four biannual rounds of treatment were associated with increased abundance of Prevotella. The lack of significant changes in gut microbiota after four biannual treatments supports the use of mass azithromycin treatment to reduce mortality in children living in low- and middle-income settings.


Assuntos
Microbioma Gastrointestinal , Azitromicina/uso terapêutico , Bactérias/genética , Criança , Pré-Escolar , Estudos de Coortes , Microbioma Gastrointestinal/genética , Humanos , Lactente , RNA Ribossômico 16S/genética
12.
Gut Pathog ; 14(1): 5, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991704

RESUMO

BACKGROUND: Mass drug administration (MDA) with azithromycin is the primary strategy for global trachoma control efforts. Numerous studies have reported secondary effects of MDA with azithromycin, including reductions in childhood mortality, diarrhoeal disease and malaria. Most recently, the MORDOR clinical trial demonstrated that MDA led to an overall reduction in all-cause childhood mortality in targeted communities. There is however concern about the potential of increased antimicrobial resistance in treated communities. This study evaluated the impact of azithromycin MDA on the prevalence of gastrointestinal carriage of macrolide-resistant bacteria in communities within the MORDOR Malawi study, additionally profiling changes in the gut microbiome after treatment. For faecal metagenomics, 60 children were sampled prior to treatment and 122 children after four rounds of MDA, half receiving azithromycin and half placebo. RESULTS: The proportion of bacteria carrying macrolide resistance increased after azithromycin treatment. Diversity and global community structure of the gut was minimally impacted by treatment, however abundance of several species was altered by treatment. Notably, the putative human enteropathogen Escherichia albertii was more abundant after treatment. CONCLUSIONS: MDA with azithromycin increased carriage of macrolide-resistant bacteria, but had limited impact on clinically relevant bacteria. However, increased abundance of enteropathogenic Escherichia species after treatment requires further, higher resolution investigation. Future studies should focus on the number of treatments and administration schedule to ensure clinical benefits continue to outweigh costs in antimicrobial resistance carriage. Trial registration ClinicalTrial.gov, NCT02047981. Registered January 29th 2014, https://clinicaltrials.gov/ct2/show/NCT02047981.

13.
J Infect Dis ; 225(6): 994-1004, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33034349

RESUMO

BACKGROUND: To eliminate trachoma as a public health problem, the World Health Organization recommends the SAFE (surgery, antibiotics, facial cleanliness, and environmental improvement) strategy. As part of the SAFE strategy in the Amhara Region, Ethiopia, the Trachoma Control Program distributed >124 million doses of antibiotics between 2007 and 2015. Despite this, trachoma remained hyperendemic in many districts and a considerable level of Chlamydia trachomatis (Ct) infection was evident. METHODS: We utilized residual material from Abbott m2000 Ct diagnostic tests to sequence 99 ocular Ct samples from Amhara and investigated the role of Ct genomic variation in continued transmission of Ct. RESULTS: Sequences were typical of ocular Ct at the whole-genome level and in tissue tropism-associated genes. There was no evidence of macrolide resistance in this population. Polymorphism around the ompA gene was associated with village-level trachomatous inflammation-follicular prevalence. Greater ompA diversity at the district level was associated with increased Ct infection prevalence. CONCLUSIONS: We found no evidence for Ct genomic variation contributing to continued transmission of Ct after treatment, adding to evidence that azithromycin does not drive acquisition of macrolide resistance in Ct. Increased Ct infection in areas with more ompA variants requires longitudinal investigation to understand what impact this may have on treatment success and host immunity.


Assuntos
Gonorreia , Doenças do Recém-Nascido , Tracoma , Antibacterianos/uso terapêutico , Azitromicina/uso terapêutico , Chlamydia trachomatis/genética , Farmacorresistência Bacteriana/genética , Etiópia/epidemiologia , Genômica , Gonorreia/tratamento farmacológico , Humanos , Lactente , Recém-Nascido , Macrolídeos/uso terapêutico , Prevalência , Tracoma/tratamento farmacológico , Tracoma/epidemiologia , Tracoma/prevenção & controle
15.
Heliyon ; 7(10): e08194, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34746468

RESUMO

Environmental enteric dysfunction (EED) is a subclinical condition of the gut characterized by changes in morphology and function with underlying chronic inflammatory responses. This study characterized composition and diversity of the gut microbiota in rural Malawian children with and without signs of EED. Fecal samples were collected from children aged 1-59 months. Neopterin, myeloperoxidase and alpha-1 antitrypsin concentrations were quantified by ELISA and combined to form a composite EED score using principal component analysis. DNA was extracted from fecal samples and V4-16S rRNA gene sequencing was used to characterize the gut microbiota. The concentrations of all three biomarkers decreased with increasing age, which is consistent with other studies of children living in similar low-income settings. Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria were the dominant phyla while Faecalibacterium and Bifidobacterium were the most prevalent genera. Increased alpha diversity was associated with a reduction in neopterin concentration. Microbiota composition was different between fecal samples with low and high composite EED scores; increased abundance of Succinivibrio was associated with reduced composite EED scores.

16.
NPJ Vaccines ; 6(1): 58, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875654

RESUMO

Ocular and urogenital infections with Chlamydia trachomatis (C.t.) are caused by a range of different serovars. The first C.t. vaccine in clinical development (CTH522/CAF®01) induced neutralizing antibodies directed to the variable domain 4 (VD4) region of major outer membrane protein (MOMP), covering predominantly B and intermediate groups of serovars. The VD1 region of MOMP contains neutralizing B-cell epitopes targeting serovars of the C and C-related complex. Using an immuno-repeat strategy, we extended the VD1 region of SvA and SvJ to include surrounding conserved segments, extVD1A and extVD1J, and repeated this region four times. The extVD1A*4 was most immunogenic with broad cross-surface and neutralizing reactivity against representative members of the C and C-related complex serovars. Importantly, in vitro results for extVD1A*4 translated into in vivo biological effects, demonstrated by in vivo neutralization of SvA and protection/cross-protection against intravaginal challenge with both SvA and the heterologous SvIa strain.

17.
Clin Microbiol Infect ; 27(6): 864-870, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32750538

RESUMO

OBJECTIVE: Mass drug administration (MDA) with azithromycin for trachoma elimination reduces nasopharyngeal carriage of Streptococcus pneumoniae in the short term. We evaluated S. pneumoniae carried in the nasopharynx before and after a round of azithromycin MDA to determine whether MDA was associated with changes in pneumococcal population structure and resistance. METHODS: We analysed 514 pneumococcal whole genomes randomly selected from nasopharyngeal samples collected in two Gambian villages that received three annual rounds of MDA for trachoma elimination. The 514 samples represented 293 participants, of which 75% were children aged 0-9 years, isolated during three cross-sectional surveys (CSSs) conducted before the third round of MDA (CSS-1) and at 1 (CSS-2) and 6 (CSS-3) months after MDA. Bayesian Analysis of Population Structure (BAPS) was used to cluster related isolates by capturing variation in the core genome. Serotype and multilocus sequence type were inferred from the genotype. Antimicrobial resistance determinants were identified from assemblies, including known macrolide resistance genes. RESULTS: Twenty-seven BAPS clusters were assigned. These consisted of 81 sequence types (STs). Two BAPS clusters not observed in CSS-1 (n = 109) or CSS-2 (n = 69), increased in frequency in CSS-3 (n = 126); BAPS20 (8.73%, p 0.016) and BAPS22 (7.14%, p 0.032) but were not associated with antimicrobial resistance. Macrolide resistance within BAPS17 increased after treatment (CSS-1 n = 0/6, CSS-2/3 n = 5/5, p 0.002) and was carried on a mobile transposable element that also conferred resistance to tetracycline. DISCUSSION: Limited changes in pneumococcal population structure were observed after the third round of MDA, suggesting treatment had little effect on the circulating lineages. An increase in macrolide resistance within one BAPS highlights the need for antimicrobial resistance surveillance in treated villages.


Assuntos
Azitromicina/uso terapêutico , Administração Massiva de Medicamentos , Nasofaringe/microbiologia , Streptococcus pneumoniae/efeitos dos fármacos , Tracoma/prevenção & controle , Gâmbia/epidemiologia , Humanos , Tracoma/epidemiologia , Tracoma/microbiologia
18.
Parasit Vectors ; 13(1): 556, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33203456

RESUMO

BACKGROUND: The World Health Organization-recommended strategy for trachoma elimination as a public health problem is known by the acronym "SAFE", where "F" stands for facial cleanliness to reduce transmission of ocular Chlamydia trachomatis infection. Accurately and reliably measuring facial cleanliness is problematic. Various indicators for measuring an unclean face exist, however, the accuracy and reliability of these indicators is questionable and their relationship to face washing practices is poorly described. METHODS: Clean face indicator (ocular or nasal discharge, flies on the face, and dirt on the face), trachoma clinical sign, and ocular C. trachomatis infection data were collected for 1613 children aged 0-9 years in 12 Senegalese villages as part of a cross-sectional trachoma prevalence study. Time of examination was recorded to the nearest half hour. A risk factor questionnaire containing Water, Sanitation and Hygiene (WASH) questions was administered to heads of compounds (households that shared a common doorway) and households (those who shared a common cooking pot). RESULTS: WASH access and use were high, with 1457/1613 (90.3%) children living in households with access to a primary water source within 30 min. Despite it being reported that 1610/1613 (99.8%) children had their face washed at awakening, > 75% (37/47) of children had at least one unclean face indicator at the first examination time-slot of the day. The proportion of children with facial cleanliness indicators differed depending on the time the child was examined. Dirt on the face was more common, and ocular discharge less common, in children examined after 11:00 h than in children examined at 10:30 h and 11:00 h. CONCLUSIONS: Given the high reported WASH access and use, the proportion of children with an unclean face indicator should have been low at the beginning of the day. This was not observed, explained either by: the facial indicators not being reliable measures of face washing; eye discharge, nose discharge or dirt rapidly re-accumulated after face washing in children in this population at the time of fieldwork; and/or responder bias to the risk factor questionnaire. A high proportion of children had unclean face indicators throughout the day, with certain indicators varying by time of day. A reliable, standardised, practical measure of face washing is needed, that reflects hygiene behaviour rather than environmental or cultural factors.


Assuntos
Face/microbiologia , Saneamento , Higiene da Pele , Tracoma/prevenção & controle , Criança , Pré-Escolar , Chlamydia trachomatis/isolamento & purificação , Estudos Transversais , Feminino , Humanos , Higiene , Lactente , Recém-Nascido , Masculino , Prevalência , Fatores de Risco , População Rural , Saneamento/métodos , Saneamento/normas , Senegal , Higiene da Pele/métodos , Higiene da Pele/normas , Inquéritos e Questionários
19.
Parasit Vectors ; 13(1): 533, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33109267

RESUMO

BACKGROUND: The clinical signs of active trachoma are often present in the absence of ocular Chlamydia trachomatis infection, particularly following mass drug administration. Treatment decisions following impact surveys and in post-control surveillance for communities are currently based on the prevalence of clinical signs, which may result in further unnecessary distribution of mass antibiotic treatment and the increased spread of macrolide resistance alleles in 'off-target' bacterial species. We therefore developed a simple, fast, low cost diagnostic assay (DjinniChip) for diagnosis of ocular C. trachomatis for use by trachoma control programmes. METHODS: The study was conducted in the UK, Germany and Tanzania. For clinical testing in Tanzania, specimens from a sample of 350 children between the ages of 7 to 15 years, which were part of a longitudinal cohort that began in February 2012 were selected. Two ocular swabs were taken from the right eye. The second swab was collected dry, kept cool in the field and archived at - 80 °C before sample lysis for DjinniChip detection and parallel nucleic acid purification and detection/quantification by qPCR assay. RESULTS: DjinniChip was able to reliably detect > 10 copies of C. trachomatis per test and correctly identified 7/10 Quality Control for Molecular Diagnostics C. trachomatis panel samples, failing to detect 3 positive samples with genome equivalent amounts ≤ 10 copies. DjinniChip performed well across a range of typical trachoma field conditions and when used by lay personnel using a series of mock samples. In the laboratory in Tanzania, using clinical samples the sensitivity and specificity of DjinniChip for C. trachomatis was 66% (95% CI 51-78) and 94.8 (95% CI 91-97%) with an overall accuracy of 90.1 (95% CI 86.4-93). CONCLUSIONS: DjinniChip performance is extremely promising, particularly its ability to detect low concentrations of C. trachomatis and its usability in field conditions. The DjinniChip requires further development to reduce inhibition and advance toward a closed system. DjinniChip results did not vary between local laboratory results and typical trachoma field settings, illustrating its potential for use in low-resource areas to prevent unnecessary rounds of MDA and to monitor for C. trachomatis recrudescence.


Assuntos
Chlamydia trachomatis , Patologia Molecular/métodos , Tracoma/diagnóstico , Adolescente , Criança , Chlamydia trachomatis/isolamento & purificação , Estudos de Coortes , Humanos , Administração Massiva de Medicamentos/efeitos adversos , Prevalência , Sensibilidade e Especificidade , Tanzânia/epidemiologia
20.
PLoS Negl Trop Dis ; 14(7): e0008449, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32667914

RESUMO

BACKGROUND: The presence of Chlamydia trachomatis (Ct) DNA at non-ocular sites suggests that these sites may represent plausible routes of Ct transmission in trachoma. However, qPCR cannot discriminate between DNA from viable and non-viable bacteria. Here we use a propodium monoazide based viability PCR to investigate how long Ct remains viable at non-ocular sites under laboratory-controlled conditions. METHODS: Cultured Ct stocks (strain A2497) were diluted to final concentrations of 1000, 100, 10 and 1 omcB copies/µL and applied to plastic, woven mat, cotton cloth and pig skin. Swabs were then systemically collected from each surface and tested for the presence Ct DNA using qPCR. If Ct DNA was recovered, Ct viability was assessed over time by spiking multiple areas of the same surface type with the same final concentrations. Swabs were collected from each surface at 0, 2, 4, 6, 8 and 24 hours after spiking. Viability PCR was used to determine Ct viability at each timepoint. RESULTS: We were able to detect Ct DNA on all surfaces except the woven mat. Total Ct DNA remained detectable and stable over 24 hours for all concentrations applied to plastic, pig skin and cotton cloth. The amount of viable Ct decreased over time. For plastic and skin surfaces, only those where concentrations of 100 or 1000 omcB copies/µL were applied still had viable loads detectable after 24 hours. Cotton cloth showed a more rapid decrease and only those where concentrations of 1000 omcB copies/µL were applied still had viable DNA detectable after 24 hours. CONCLUSION: Plastic, cotton cloth and skin may contribute to transmission of the Ct strains that cause trachoma, by acting as sites where reservoirs of bacteria are deposited and later collected and transferred mechanically into previously uninfected eyes.


Assuntos
Chlamydia trachomatis/genética , DNA Bacteriano/isolamento & purificação , Fômites/microbiologia , Reação em Cadeia da Polimerase/métodos , Tracoma/microbiologia , Tracoma/transmissão , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA